Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Tissue Viability ; 31(1): 173-179, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34774393

RESUMO

As the skin is the main protective organ of the body, it is exposed to wounds or injuries which carry out a healing process during a period of approximately 15 days depending on the severity of the injury. In the present research, the development of chitosan-based hydrogels loaded with silver nanoparticles and calendula extract (Ch-AgNPs-Ce) was proposed. This can be used to fulfill the hemostatic, anti-infective, antibacterial, healing and anti-inflammatory functions through controlled release of the nanoparticles and calendula extract in substitution of commonly used drugs. The physical properties of the silver nanoparticles were analyzed by UV-visible spectroscopy, scanning and transmission electron microscopy, showing a size between 50 and 100 nm. The antibacterial properties were evaluated by the agar well diffusion method. Antimicrobial testing of the hydrogels showed that the inclusion of silver nanoparticles provides concentration-dependent antibacterial behavior against E. coli and S. aureus. The healing properties of the system were tested in two diabetic patients to whom said hydrogels were placed, obtaining a positive curative result after a few weeks. Therefore, it can be concluded that Ch-AgNPs-Ce hydrogels can achieve healing in chronic or exposed wounds after a period of time which can be used in alternative treatments in patients with poor healing capacity.


Assuntos
Quitosana , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Calendula , Quitosana/farmacologia , Preparações de Ação Retardada , Escherichia coli , Humanos , Hidrogéis/farmacologia , Extratos Vegetais , Prata/farmacologia , Staphylococcus aureus , Cicatrização
2.
Nutr Rev ; 75(1): 37-48, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974598

RESUMO

The current values for metabolizable energy of macronutrients were proposed in 1910. Since then, however, efforts to revise these values have been practically absent, creating a crucial need to carry out a critical analysis of the experimental methodology and results that form the basis of these values. Presented here is an exhaustive analysis of Atwater's work on this topic, showing evidence of considerable weaknesses that compromise the validity of his results. These weaknesses include the following: (1) the doubtful representativeness of Atwater's subjects, their activity patterns, and their diets; (2) the extremely short duration of the experiments; (3) the uncertainty about which fecal and urinary excretions contain the residues of each ingested food; (4) the uncertainty about whether or not the required nitrogen balance in individuals was reached during experiments; (5) the numerous experiments carried out without valid preliminary experiments; (6) the imprecision affecting Atwater's experimental measurements; and (7) the numerous assumptions and approximations, along with the lack of information, characterizing Atwater's studies. This review presents specific guidelines for establishing new experimental procedures to estimate more precise and/or more accurate values for the metabolizable energy of macronutrients. The importance of estimating these values in light of their possible dependence on certain nutritional parameters and/or physical activity patterns of individuals is emphasized. The use of more precise values would allow better management of the current overweight and obesity epidemic.


Assuntos
Metabolismo Energético , Avaliação Nutricional , Dieta , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Proteínas na Dieta/administração & dosagem , Proteínas na Dieta/urina , Guias como Assunto , Humanos , Modelos Teóricos , Projetos de Pesquisa
3.
Biol Res ; 48: 17, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25889629

RESUMO

BACKGROUND: Karwinskia humboldtiana (Kh) is a poisonous plant of the rhamnacea family. To elucidate some of the subcellular effects of Kh toxicity, membrane fluidity and ATPase activities as hydrolytic and as proton-pumping activity were assessed in rat liver submitochondrial particles. Rats were randomly assigned into control non-treated group and groups that received 1, 1.5 and 2 g/Kg body weight of dry powder of Kh fruit, respectively. Rats were euthanized at day 1 and 7 after treatment. RESULTS: Rats under Kh treatment at all dose levels tested, does not developed any neurologic symptoms. However, we detected alterations in membrane fluidity and ATPase activity. Lower dose of Kh on day 1 after treatment induced higher mitochondrial membrane fluidity than control group. This change was strongly correlated with increased ATPase activity and pH gradient driven by ATP hydrolysis. On the other hand, membrane fluidity was hardly affected on day 7 after treatment with Kh. Surprisingly, the pH gradient driven by ATPase activity was significantly higher than controls despite an diminution of the hydrolytic activity of ATPase. CONCLUSIONS: The changes in ATPase activity and pH gradient driven by ATPase activity suggest an adaptive condition whereby the fluidity of the membrane is altered.


Assuntos
Adenosina Trifosfatases/metabolismo , Karwinskia/toxicidade , Fluidez de Membrana/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Animais , Frutas/toxicidade , Masculino , Mitocôndrias Hepáticas/enzimologia , Força Próton-Motriz/efeitos dos fármacos , Distribuição Aleatória , Ratos Sprague-Dawley , Frações Subcelulares/efeitos dos fármacos , Partículas Submitocôndricas/efeitos dos fármacos
4.
Biol. Res ; 48: 1-6, 2015. graf
Artigo em Inglês | LILACS | ID: biblio-950781

RESUMO

BACKGROUND: Karwinskia humboldtiana (Kh) is a poisonous plant of the rhamnacea family. To elucidate some of the subcellular effects of Kh toxicity, membrane fluidity and ATPase activities as hydrolytic and as proton-pumping activity were assessed in rat liver submitochondrial particles. Rats were randomly assigned into control non-treated group and groups that received 1,1.5 and 2 g/Kg body weight of dry powder of Kh fruit, respectively. Rats were euthanized at day 1 and 7 after treatment. RESULTS: Rats under Kh treatment at all dose levels tested, does not developed any neurologic symptoms. However, we detected alterations in membrane fluidity and ATPase activity. Lower dose of Kh on day 1 after treatment induced higher mitochondrial membrane fluidity than control group. This change was strongly correlated with increased ATPase activity and pH gradient driven by ATP hydrolysis. On the other hand, membrane fluidity was hardly affected on day 7 after treatment with Kh. Surprisingly, the pH gradient driven by ATPase activity was significantly higher than controls despite an diminution of the hydrolytic activity of ATPase. CONCLUSIONS: The changes in ATPase activity and pH gradient driven by ATPase activity suggest an adaptive condition whereby the fluidity of the membrane is altered.


Assuntos
Animais , Masculino , Ratos , Mitocôndrias Hepáticas/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Karwinskia/toxicidade , Fluidez de Membrana/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Partículas Submitocôndricas/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Distribuição Aleatória , Ratos Sprague-Dawley , Força Próton-Motriz/efeitos dos fármacos , Frutas/toxicidade
5.
Rev. neurol. (Ed. impr.) ; 57(4): 171-177, 16 ago., 2013.
Artigo em Espanhol | IBECS | ID: ibc-114445

RESUMO

Introducción. El sistema inmune y el sistema nervioso periférico y central se encuentran en constante comunicación a través de mensajeros y moléculas de señalización liberadas, como las citocinas, los neuropéptidos, las neurohormonas y los neurotransmisores, entre otros. Las convulsiones se definen como la aparición transitoria de signos y síntomas que inducen una actividad neuronal excesiva anormal en el cerebro; después de una crisis convulsiva, se ha observado la generación de un proceso neuroinflamatorio, con la consecuente liberación de citocinas proinflamatorias y de moléculas mediadoras de inflamación, que predisponen a la epilepsia. Objetivo. Mostrar la evidencia que sugiere y apoya el papel de las citocinas en la aparición de crisis convulsivas y en la epilepsia, ya que estas moléculas han demostrado propiedades duales. Desarrollo. El sistema nervioso central, a través de la barrera hematoencefálica, restringe el flujo de células activadas y de mediadores de inflamación liberados desde el sistema periférico hacia el parénquima cerebral; además, existe otra serie de mecanismos que contribuyen a la inmunidad ‘selectiva y modificada’ del sistema nervioso central. Toda esta serie de eventos tiene la finalidad de limitar respuestas del sistema inmune a nivel central, aunque se ha demostrado que en el sistema nervioso central se encuentran de manera permanente bajo el control y la regulación del sistema inmune. Conclusiones. Las citocinas en la epilepsia muestran un papel dual con propiedades pro y anticonvulsionantes. Las convulsiones no solamente inducen la expresión de citocinas dentro del cerebro, sino también periféricamente (AU)


Introduction. The immune system and the peripheral and central nervous system are in constant communication by means of messengers and signalling molecules released, such as cytokines, neuropeptides, neurohormones and neurotransmitters, among others. Seizures are defined as the transitory appearance of signs and symptoms that trigger an abnormally excessive neuronal activity in the brain. Following seizures the generation of a euroinflammatory process has been observed to occur, with the consequent release of proinflammatory cytokines and inflammation-mediating molecules, which make the patient more prone to epilepsy. Aim. To offer evidence suggesting and supporting the role of cytokines in the appearance of seizures and in epilepsy, since these molecules have proven to have dual properties. Development. The central nervous system, by means of the blood-brain barrier, restricts the flow of activated cells and inflammation mediators released from the peripheral system towards the brain parenchyma. Moreover, there is also another series of mechanisms that contributes to the ‘selective and modified’ immunity of the central nervous system. The purpose of all this series of events is to limit the responses of the immune system at central level, although it has been shown that in the central nervous system they are permanently under the control and regulation of the immune system. Conclusions. Cytokines in epilepsy play a dual role with pro- and anti-convulsive properties. Seizures do not induce the expression of cytokines only inside the brain, but also peripherally (AU)


Assuntos
Humanos , Citocinas/fisiologia , Convulsões/fisiopatologia , Epilepsia/fisiopatologia , Sistema Nervoso Central/imunologia , Barreira Hematoencefálica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...